
IsolaS2 web-app
Rapid assessment of the utility of the

Sentinel-2 MSI land-use data for regional actors

Gavin Brelstaff

CRS4 in Sardinia

2022

https://crs4.github.io/IsolaS2/src

1 / 28

https://crs4.github.io/IsolaS2/src

1. Introduction

The activity described in this report continues a line of experimental research into the feasibility of
client-side, browser-based solutions to certain fields such as electronic-patient records [1], mutli-
lingual texts [2–5] and accessibility of satellite imagery over a given place and period. [6,7].

In 2015 the European Space Agency (ESA) put its Sentinel-2 mission [8] into operation by
launching the first of two satellites. Both now produce multi-spectral image (MSI) with a ground
resolution as fine as 10m2 – which significantly improves on that provided by USGS's Landsat 7 &
8 satellites [9,10] – while the range of spectral bands remains extensive – see Table 1. As such this
data enhances support for land-use monitoring and analysis, within EU regions and across the
world.

Although the Sentinel-2 data is made available at no monetary cost from ESA’s Copernicus Sci-Hub
portal [11] accessing it remained mostly a domain of well-resourced institutions such as
universities, research entities and corporate enterprises until two fairly recent advances:

1: the portal known as EO Browser [12] has brought a seamless Google-maps like
navigation to the MSI data;

2: the search portal CreoDIAS Finder [13] has modernised the way of finding for data over a
particular location and a given date-period: as such it is much more responsive compared to
ESA's original Sci-Hub.

Nevertheless, it remains hard for less experienced users such as regional planners, citizen scientists,
farmers, SMEs and start-ups to gain an intuitive picture of the pattern of data available to them for
their region of interest – when they are faced with such global, generalist portals. The repeat
patterns can be difficult to decipher since (a) a region can be imaged by more than one orbit, (b)
acquisitions can fail and (c) even when successful their images can be obscured by clouds. So here
we describe a third advance the IsolaS2 web-app that displays for a chosen region a month-view of
the available data-pattern. It is intended to bring Sentinel-2 access within reach of a wider
population, whose concern is typically local rather than global and who may be equipped with just a
smartphone, tablet or a basic PC.

Table 1. Sentinel 2 Multispectral bands and their approximate properties

2 / 28

2. Motivation

CRS4 presents here a web-app named IsolaS2 – intended as an entry point for quickly assessing the
convenience of using Sentinel-2 MSI land-use data across a particular region or island. MSI stands
for Multi-Spectral Imagery since there are 12 distinct spectral bands available – of which we focus
on those most useful for monitoring vegetation across small-to-medium tracts of land.

As such this application intersects several key themes at CRS4: Space technologies, Environmental
monitoring, and Agri-Tech – and taps our original core competence: i.e. that of integrating state-of-
the-art internet technologies towards the perceived Regional needs, in a way extensible to solutions
elsewhere.

Our central motivation is to lower the architectonic barriers experienced by unpractised users at the
contemporary web-based Sentinel-2 data providers, and so boost the uptake of such data: In
particular by explicitly removing:

1. the need to register, login, respect timeouts, and endure throttled downloads – at ESA's
SciHub site;

2. the need to pay service subscription to download data – at CreoDIAS and EO Browser;
3. the need to adopt a cloud computing paradigm in order to easily access or download the

data from the Google Storage Sentinel-2 repository [14].

This web-app has become feasible due to several recent state-of-the-art innovations in the delivery
of images and data over the web – as will be detailed later – these include:

1. the advent of the free CreoDIAS Finder REST service to find available Sentinel data;
2. the ability to source thumbnail images from diverse online resources and swap them in when

one or other goes down;
3. the ability of browsers to mix composite images from the pixels in pairs of thumbnails;
4. the ability to deep-link to given date/geo-location combinations at the EO Browser site;
5. the free ongoing Sentinel-2 repository at GoogleStorage;
6. the ability to implement a free CORS proxy using node.js on Cloudflare Workers.

Conceived first for the island of Sardinia, our web-app is configurable to run at other geo-locations
– i.e. those representable as a few contiguous 100x100 km UTC tiles – e.g. Cyprus, Corsica the
Hebrides, Gotland, Zanzibar, Yorkshire, etc. as shown in the Gallery Section. Indeed once the user
navigates to the page configured for their geo-location all they need do is point, click, observe and
download MSI data, where ever they deem it appropriate. Example of configurations are given on
GitHub in the src directory of the project https://github.com/crs4/IsolaS2. And follow the
implementation details in subsection 7.1 below.

The web-app is intended to be intuitive to use and its purpose easily discoverable – nevertheless the
mini user guide below details its uses and helps define some terms used in this report.

3 / 28

https://github.com/crs4/IsolaS2/tree/main/src/sites

3. IsolaS2 – illustrated for the Island of Sardinia

Fig. 1. The Web-app with the Tile-Tab and further destinations (EO Browser & SNAP)

4 / 28

4. Mini User Guide

Fig. 1 illustrates the use of the web-app. On the left the Web-app shows how the page first appears
to the user – divided into an upper and a lower panel.

The lower panel acts as a calendar for navigating between acquisition dates, where:
• The current date is high-lit in yellow.
• The green highlight indicates the date of the acquisition being shown in the upper panel.
• Red numerals indicate future scheduled acquisition dates.
• Blue numerals indicate dates of existing acquisitions – each bearing a symbol.

• Each symbol (☁⛅☀)️ indicates the likelihood of obscuring cloud cover on that date.
• Clicking on a day marked by a symbol updates the upper panel to display its images.
• The top two rows of the calendar panel indicate the month, year, and the days of the week.
• Clicking on the 文 toggles the language of the month and day names – e.g. to Italian.
• Clicking on the < or > moves back or forward by a month.
• Clicking on the << or >> moves back or forward by a year.
• Clicking on the circle symbol returns to today’s month.

The upper panel is a grid showing contiguous UTC tiles where each tile is initially filled in with it
geographically mapped image from the latest Sentinel-2 acquisition. Tiles are marked as follows:

• 🟡 a yellow circle (not shown) indicates a tile for which the “raw” level 1C product has
been successfully acquired by ESA.

• ✅ A green tick box replaces the yellow circle – typically after six hours – once ESA has
processed the acquisition and published it as level 2A product suitable for land-use analysis.
Clicking on a green-tick tile opens a new browser-tab labelled the Tile Tab in Fig 1

• A ‘break’ symbol replaces those above in the rare case of a split tile – explained later. 📉 Its
tile also becomes clickable when the level 2A product is available.

• ⚪ A grey circle indicates a tile left blank. This occurs when the tile either lies outside of
the satellites swath, or outside of our specified region of interest and has not been requested,
or when the data is not yet published.

The Tile Tab allows users to effectively zoom-in further and download MSI data to disk.
• A click on the tile-image established a point of interest (white cross in Fig 1.) and fills the

geo-location bar with the corresponding longitude and latitude coordinates.
• A click on the link marked EO Browser opens another tab containing that external service

centred on the selected longitude latitude coordinate – with an adjustable zoom-factor (16).
• The links marked B02, B03, B04, TCI or B08 when clicked initiate the download of the

named 10m MSI band images for the given tile.
• Downloads are from Google Storage's Sentinel-2 repository and are typically rapid once

they become available about a day following acquisition.
• Users may then visualize and or analyse the downloaded MSI data locally – e.g. on a

workstation using ESA's SNAP software [15], a GIS or by using Gdal based scripts [16] or
even on a PC using IrfanView [17].

5 / 28

5. Must-have requirements

Beyond the no-barriers rationale indicated above, we set the following ‘must-have’ requirements
for the web-app to be considered successful. These aim to make its running costs negligible. The
requirements include:

R1 The web-app must require minimal maintenance – i.e. have no traditional back-end,
middleware or database. That is: Zero stack, not Full-stack!

R2 The web-app must, instead, source all the data it consumes (tile-images, data-searches and
product metadata) purely from live online services – and directly within the browser.

R3 The web-app must play fair and so not hammer those live online services – by tactful
deployment of the browser’s cache and its local storage API.

R4 The web-app must fit to the user’s screen: be it on a mobile, a tablet, laptop or desktop device.

R5 The web-app must be configurable to other geo-locations of similar size and shape, and also
allow the calendar’s natural language locale to be localised.

R6 The web-app must require the installation of no software beyond that of a modern web browser:
i.e. need no plug-ins, no browser extensions and no native applications.

R7 The web-app must gracefully handle edge cases. In particular, where ESA publishes two land-
use products for a given tile, rather than just one – or when one or more of the thumbnail-image
servers goes offline for a period.

These requirements effectively fix our development upon the three basic web technologies:

HTML – to specify the layout of the calendar panel and to customise the grid of tiles in order to
map the region of interest.

CSS – to style the page content and to be responsive to the user’s screen form-factor.

JS – i.e. JavaScript, to fetch (as JSON, XML) live data and marshal the necessary dynamic content
and to implement interactive actions.

The result thus becomes a static web-site in the form of a directory of HTML, CSS and JS files.
Consequently the web-app also runs locally from disk (without server) – a useful feature during
development or configuration. The source directory is published/released by uploading it to any
hosting system that respects directory structures and relative addressing – e.g. Firebase [18] or
GitHub Pages [19] (but not WordPress nor OneDrive, nor Google Drive nor Dropbox, etc.) .

6 / 28

6. Gallery of Islands and Regions

Cyprus

Sicily / Sicilia

7 / 28

Corsica

Yorkshire UK

Jamaica

8 / 28

Gotland Sweden

Hebrides Scotland

Darwin Australia

Friesland

9 / 28

Balearic Isles

Zanzibar Tanzania

Abidjan Ivory Coast

Bali

10 / 28

Taiwan ROC

Long Island New York

11 / 28

7. Implementation details

The following sections explain the implementation details instrumental in the creation of the web-
app. These include:

• Declarative HTML & CSS grid – for customising the geographical parameters
• REST query and responses – to populate the calendar with acquisition data
• Fail-over image sourcing – to fill the tile-panel with thumbnail images
• Composite imaging – to render “split-tiles”
• Caching and Local Storage – to play fair with online live services
• Accessing metadata at Google Storage via CORS proxy in the Tile-Tab.

7.1 Declarative HTML & CSS grid

The layout for a given place is declared in the HTML – e.g. for the island of Sardinia:

<div class="grid2x3" name="Sardinia" id="tiles"
 polygon="POLYGON((8.02+39,10.12+39,10.12+41,8.02+41,8.02+39))">
 <div id="T32TML" class="grid-item" orbits="R022 R065"></div>
 <div id="T32TNL" class="grid-item" orbits="R022 R065"></div>
 <div id="T32TMK" class="grid-item" orbits="R022 R065"></div>
 <div id="T32TNK" class="grid-item" orbits="R022 R065"></div>
 <div id="T32SMJ" class="grid-item" orbits="R022 R065"></div>
 <div id="T32SNJ" class="grid-item" orbits="R022"></div>
</div>
<div id="day" day="" lang="en it ca"></div>
<div class="grid7x7" id="calendar"></div>

Here, the upper panel is declared by the DIV element having the id attribute tiles – termed #tiles. It
wraps the declaration of six tiles (also DIVs) that are to be laid out in the 2x3 grid pattern, as seen in
Fig. 1. The bolded attributes of the tiles and the wrapper are discussed later in this section.
The lower panel is declared by two more DIV elements: #day for the calendar navigation bar, and
#calendar for the month view 7x7 grid. Here the attribute lang indicates the chosen language
locales: English, Italian, etc.

Grid layout [20] follows the CSS convention of specifying the class attribute gridCxR – where C
and R are respectively the number of columns and rows in the grid. For example the above tile
panel is laid out according to the following CSS declarations:

#tiles.grid2x3
 {
 display: grid;
 grid-template-columns: repeat(2,147px); /* 2 cols, 343 total width */
 grid-template-rows: repeat(3,147px); /* 3 rows */
 grid-gap: 1px 1px; /* visible tile borders */
}

#tiles div.grid-item { position: relative; }

12 / 28

The polygon attribute of #tiles wrapper DIV specifies an ordered list of longitude, latitude
coordinate-pairs – in a format readily understood as a geo-located polygon by the CreoDIAS Finder
web service. In our example POLYGON((8.02+39,10.12+39,10.12+41,8.02+41,8.02+39)) there
are five comma-separated pairs – with each pair coded as two numbers separated by a plus sign. By
convention the last pair must repeat the first – so to close the polygon.

When designing the HTML for a given region it is convenient to select an initial rectangular
polygon with the mouse interactively at the CreoDIAS Finder site – e.g. as a bounding box around
the island of Sardinia. This is then to be successively reduced in width and height until the finder
produces results only for the region of interest and not unwanted adjacent areas. Note, the polygon
declared above corresponds to just a thin rectangle running down the central spine of Sardinia.
The designer/developer can then sift the Finder’s search results into a list of all the tile id and orbits
operational in the region. For example, the results for the tile with id="T32TML" coincide with just
two distinct orbits: orbits="R022 R065". The attributes can then be assigned to one of the tiles in
the HTML grid – and so on until all the tiles are complete. Finally, the tiles in the grid must be
sorted into traditional map order. This is easily achieved by following their N-S, E-W grid-order
observed at the online map service at eAtlas [21] Note, our tile id is composed of the letter T
followed by the code-name of the 100x100 km UTC tile that it is to represent.

7.2 RESTful Query and Responses

The polygon once designed is then used by the web-app to compose a RESTful query at the
CreoDIAS Finder for a chosen date range. The following URL does this by specifying our polygon
for the calendar month-view: July 2022:

https://finder.creodias.eu/resto/api/collections/Sentinel2/search.json?
maxRecords=400&startDate=2022-06-27T00:00:00Z&completionDate=2022-08-
07T23:59:59Z&geometry=POLYGON((8.02+39,10.12+39,10.12+41,8.02+41,8.02+39))&so
rtParam=startDate&sortOrder=descending&status=all&dataset=ESA-DATASET

The URL composition and submission is implemented in JavaScript – where day1 and day2 are the
start and end dates, and polygon is the POLYGON string.

deactivate_ui();

fetch(get_creodias_url(polygon, day1, day2), {headers: {'Origin':origin }})
 .then((response) => {
 if(response.ok) {
 return response.json();
 }
 throw new Error("fetching creodias failed ****");
 })
 .then((jsonResponse) => {
 process_features(jsonResponse.features); // now do the business
 })
 .catch((error) => {
 console.log(error + "\n origin is: " + origin);
 activate_ui();
 });

13 / 28

Here the URL is composed by the get_creodias_url function then passed to the fetch function
in order to submit the request using asynchronous promises. Note, the interactivity of the page gets
deactivated until the request returns – which thus avoids any accidental double-clicking – which
would otherwise hit the CreoDIAS server in unduly rapid succession (satisfying R3).
The returned response then can be parsed as a JSON object and stored as a collection of Features.

Fig 2. Example response from CreaDIAS Finder in JSON format (extracts)

Each Feature corresponds to a Sentinel-2 data product found within the polygon between the start
and end dates. Each contains the relevant metadata for that Feature – as illustrated above where the
two fields outlined in red are instrumental for the web-app:

• title – e.g. S2B_MSIL2A_20220722T100559_N0400_R022_T32TMK_20220722T130911.SAFE
• cloudCover – e.g. 1.175362 (as percentage)

14 / 28

The title field is later used to compose URLs for thumbnail images that fill the tiles in the web-app’s
upper panel – but first the field is parsed to obtain several sub-items:

• S2B – mission S2B, rather than S2A

• L2A – processing level L2A, rather than L1C

• 20220722 – i.e. 22/07/2022 the calendar date of the acquisition
• R022 – the orbit number
• T32TMK – the tile id.

To populate the calendar month-view the Features are grouped by acquisition date. Date cells
corresponding to days with one or more acquisition then receive several new attributes – e.g. our
date-cell for 22/07/2022 is then written as follows:

<div class="grid-item dom ..." date="2022-07-22" cloud="☀"️
L1C="S2B_MSIL1C_20220722T100559_N0400_R022_T_20220722T121536 32SMJ 32SNJ
32TMK 32TML 32TNK 32TNL"
L2A="S2B_MSIL2A_20220722T100559_N0400_R022_T_20220722T130911 32SMJ 32SNJ
32TMK 32TML 32TNK 32TNL">22</div>

These attributes include:
• cloud – that is to allow the styling of the cell based on the cloudCover values averaged

over all available tiles
• L1C – that lists all level-1 tile products found for that acquisition date.
• L2A – that lists all level-2 tile products found for that acquisition date.

The latter two are space-separated lists for the two distinct product types. Each lists the UTC tile-
names (e.g. 32SMJ 32SNJ 32TMK 32TML 32TNK 32TNL) preceded by the common stem of their
product name (e.g. S2B_MSIL2A_20220722T100559_N0400_R022_T_20220722T130911) – i.e. that
name with tile-names excised. That way it is possible to recover the full product name for each
listed tile when needed. Indeed, each populated date-cell is then assigned an event-handler which
when clicked updates the upper-panel with thumbnail images from that day – i.e. by recovering the
relevant product names, as discussed below.

Dates that are in the future are styled in red if they match planned acquisition dates according to
ESA’s 10 day orbital repeat schedule – this makes use of the aforementioned orbits attributes
and is implemented by the is_transit_day algorithm (not shown here).

7.3 Fail-over image sourcing

The upper-panel – see Fig 1. – of the web-app presents a map comprising thumbnail Sentinel-2
images – one per UTC tile – each being represented by a DIV element ready to be filled with a
tempo-spatially mapped thumbnail image. Three cases arise, in order of preference:

15 / 28

✅ : using an L2A thumbnail – when the tile’s id is listed in the date-cell’s L2A attribute,
🟡 : using an L1C thumbnail – when the tile’s id is listed in the date-cell’s L1C attribute,

 : leaving the tile completely black – when no data is available. ⚪

The latter can also happen when the orbital swath does not actually intersect the tile’s geographical
extent. Also, just part of a tile can be black when that part lies outside of the orbital swath – e.g. at
the top left corner in Fig.1. That tile has some content and thus counts as a regular acquisition.

Though not advertised as such, live online services often permit Sentinel-2 thumbnail images to be
loaded at ones own site using the regular IMG element – as long as one knows the correct URL.
However, this does not include ESA’s own Open Access Hub since it enforces registration and
times-out logins on a strict frequency and stipulates content-disposition response headers. Neither
does it include the Google Storage repository which it only provides thumbnails as JP2 files – since
they are not a browser-native format. Live online services that do allow unencumbered access to
thumbnails in browser-native JPG format include:

CreoDIAS – that has URLs of the type:
https://finder.creodias.eu/files/Sentinel-2/MSI/L2A/2022/07/22/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911.SAFE/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911-ql.jpg

Peps-CNES – that has URLs of the type:
https://peps.cnes.fr/quicklook/2022/07/22/S2B/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911_quicklook.jpg

Sentinel-Hub.com – that has URLs, only for L1C thumbnails, of the type:
https://roda.sentinel-hub.com/sentinel-s2-l1c/tiles/32/T/NK/2022/7/22/0/preview.jpg

Note: Sentinel-Hub.com thumbnails are exceptional in three ways:
a) their thumbnails are nearly always available across the globe.
b) their URLs can be composed with only the tile-id and the acquisition date (without product

name) – so they are a “poor man's substitute” when all L2A sources fail.
c) Their thumbnails have white rather than black background pixels.

It is possible to try one thumbnail-image source after another until one successfully loads into the
tile’s IMG element. This has a dual role:

• Fail-over image sourcing – when one live source goes down another cuts in.
• Acquisition day feedback – until the L2A image shows up the L1C image is shown, else a

black tile may indicate nothing available yet.,

We implement thumbnail image-sourcing from four alternatives – in the following order

1. CreoDIAS L2A
2. PEPS-CNES L2A
3. PEPS-CNES L1C
4. Sentinel-Hub.com L1C.

16 / 28

This is achieved using a tail-recursive JavaScript function loadAlternative [22] in conjunction
with the IMG element.

function loadAlternative(img_el, list)
{
 img_el.onload = fix_roda; // see later
 var tmp_img = new Image();
 tmp_img.onload = function() { img_el.src = this.src; }
 tmp_img.onerror = function() {
 if(list.length) loadAlternative(img_el, list);
 }
 tmp_img.src = list.shift(); // pick off the first url in the list
} // now the onload or onerror fires

This function depends on the IMG element’s own onload and onerror event-handlers – whereby
if the current thumbnail does not load the error is handled by passing on to the next alternative in
the list. For our example, the HTML of IMG element reads like this:

<IMG
src="https://finder.creodias.eu/files/Sentinel-2/MSI/L2A/2022/07/22/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911.SAFE/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911-ql.jpg"
data-alternative="https://peps.cnes.fr/quicklook/2022/07/22/S2B/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911_quicklook.jpg,
https://peps.cnes.fr/quicklook/2022/07/22/S2B/
S2B_MSIL1C_20220722T100559_N0400_R022_T32TNK_20220722T121536_quicklook.jpg,
https://roda.sentinel-hub.com/sentinel-s2-l1c/tiles/32/T/NK/2022/7/22/0/preview.jpg"
onerror="loadAlternative(this,this.getAttribute('data-alternative').split(','))"
>

Clearly this is not hand-coded. It is generated automatically for each tile – via JavaScript –
whenever a new date is selected in the calendar panel. As a result the best available thumbnail
loads into each tile – and fills up the map. Finally any tile marked with a green-tick gets assigned
an event-handler so that a click on that tile open up the Tile-Tab (see Fig. 1) – as covered later.

The white background of a Sentinel-Hub.com thumbnail can disrupt the visual interpretation of the
upper-panel – especially when mixed with other tiles having black backgrounds. Recent browser
innovation now means that white image pixels can be efficiently made black within the browser –
using the new standard JavaScript routines getImageData and putImageData [23] which allow
read/write access to the pixels inside browser-loaded images – as seen in our example code below.
There the function fix_roda is largely declarative – and as such the structure of the code provides
little indication of the sequence of events that it implements. In the interests of clarity, we outline
some of that sequence below.

• An Image Object gets first instantiated as img;
• img then declares (but does not trigger) its own onerror and onload event-handlers:

onerror caters for final fail-over; onload contains all the image processing.
• Program control then arrives at the final statement of the function – where img is assigned a

src attribute which instructs the browser to immediately try to load the image – and trigger
either the onerror or onload code.

17 / 28

• Once triggered the onload handler uses getImageData to gain access to the pixel map of the
now loaded image, and then passes that map to the set_white_black subroutine – so that
all white pixels from the edge inwards become black. The new pixel map is then rendered
as an image in the tile’s DIV – using putImageData.

function fix_roda(ev)
{
 var myImg = ev.target;
 var myDiv = myImg.parentNode;
 if(! myImg.src.includes('roda.sentinel-hub.com')) return; // not roda so do nothing
 myDiv.style.position = 'relative';
 var img = new Image();
 img.alt = "Loading...";
 img.crossOrigin = ": *";
 img.onerror= function(e) { console.log('img.onerror: ' + this.src); };
 img.onload = function() {
 console.log('img.onload');
 var canvas = document.createElement('canvas');
 style_canvas(canvas, img.width, img.height, 1);
 myDiv.appendChild(canvas);
 var ctx = canvas.getContext('2d');
 ctx.drawImage(img, 0, 0);
 const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
 const data = imageData.data;
 set_white_black(data, canvas.width, canvas.height);
 imageData.data = data;
 ctx.putImageData(imageData, 0, 0); // update into canvas
 }
 img.src = myImg.src; // triggers img.onload()
}

function is_white(data, i)
{ const TOP=252; // fuzz is 3
 return((data[i++] > TOP) && (data[i++] > TOP) && (data[i] > TOP)) ;
}

function set_black(data, i) { data[i++] = 0; data[i++] = 0; data[i] = 0; }

function set_white_black(data, width, height)
{
 for(var row=0; row<height; row++)
 { // Left-right direction
 var i = 4*row*width;
 for(var col=0; col<width; col++, i+=4)
 {
 if(! is_white(data, i)) break; // out of this row
 set_black(data, i) ;
 }
 // Right-left direction
 i = 4*(row+1)*width - 4;
 for(var col=0; col<width; col++, i-=4)
 {
 if(! is_white(data, i)) break; // out of this row
 set_black(data, i) ;
 }
 }
}

function style_canvas(canvas, width, height, zIndex)
{
 canvas.width=width; canvas.height=height; canvas.style.position = 'absolute';
 canvas.style.left = 0; canvas.style.top = 0; canvas.style.zIndex = zIndex;
}

18 / 28

7.4 Composite imaging – to render “split-tiles”

An edge case arises whenever ESA decides to cut the data-take of the orbital swath directly above
the given tile. ESA then delivers two L1C/L2A products for that tile – with the first being filled
only in the upper-diagonal and the second only in the lower-diagonal – as shown below.

Fig 3. Example of the L2A “split-tile” left) upper-diagonal, right) lower-diagonal

Date: 2022-05-31: Tile T32SMJ

ESA leaves the task of combining the two “split-tiles” into one composite tile to the consumer.
Indeed the task of combining two JPG thumbnail images, used to necessitate a back-end service
violating R1. This can now occur efficiently within the browser – using the same JavaScript
routines as before – e.g., as shown below

Fig 4. Composite thumbnail the L2A “split-

tile” Date: 2022-05-31: Tile T32SMJ

Since it is useful to alert the user that a tile is split we leave a black line in the composite and mark
the tile with a special symbol. The black line indicates the orientation of the split. The📉
composite thumbnail is implemented by function load_composite – where the thickness of that
line. is determined, the input parameter fuzz. – see below.

19 / 28

function load_composite(id_str, src1, src1_bak, src2, src2_bak)
{
 var myDiv = document.getElementById(id_str);
 myDiv.style.position = 'relative';

 var img1 = new Image();
 img1.setAttribute('parent_id', id_str);
 img1.crossOrigin = 'anonymous';
 img1.onerror= function(ev) { ev.target.onerror=null; if(src1_bak) ev.target.src = src1_bak; }
 img1.onload = function() {
 if(img1.width + img1.height == 0) { img1.onerror(); return; }
 img_to_canvas(img1);
 var img2 = new Image();
 img2.setAttribute('parent_id', id_str);
 img2.crossOrigin = 'anonymous';
 img2.onerror= function(ev) { ev.target.onerror=null; if(src2_bak) ev.target.src = src2_bak; }
 img2.onload = function() {
 if(img2.width + img2.height == 0) { img2.onerror(); return; }
 img_to_canvas(img2)
 }
 img2.src = src2; // triggers img2.onload()
 }
 img1.src = src1; // triggers img1.onload()
}

function img_to_canvas(img) // img is a node/element <- this
{
 var canvas = document.createElement('canvas');
 style_canvas(canvas, img.width, img.height, 1);

 const id_str = img.getAttribute('parent_id');
 var myDiv = document.getElementById(id_str);
 myDiv.appendChild(canvas);
 var ctx = canvas.getContext('2d');

 ctx.drawImage(img, 0, 0);
 const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
 const data = imageData.data;
 set_black_transparent(data, 3); // fuzz = 3
 imageData.data = data;
 ctx.putImageData(imageData, 0, 0); // update into canvas
}

function style_canvas(canvas, width, height, zIndex)
{
 canvas.width=width; canvas.height=height; canvas.style.position = 'absolute';
 canvas.style.left = 0; canvas.style.top = 0; canvas.style.zIndex = zIndex;
}

function set_black_transparent(data, fuzz)
{
 for(var i=0; i<data.length; i+=4) {
 if((data[i] < fuzz) && (data[i + 1] < fuzz) && (data[i + 2] < fuzz)) {
 data[i + 3] = 0; // set alpha = transparent where image is black
 }
 }
}

This code involves nested declarations one for each part of the split tile, as follows:
• An Image Object gets first instantiated as img1;
• img1 then declares (but does not trigger) its own onerror and onload event-handlers:

onerror caters for a fail-over; onload contains all the image processing.

20 / 28

• Program control then arrives at the final statement of the function – where img1 is assigned
a src attribute which instructs the browser to immediately try to load the image – and
trigger either the onerror or onload code.

• Once triggered the onload handler calls image_to_canvas that uses getImageData to gain
access to the pixel map of the now loaded image, and then passes that map to the
set_black_transparent subroutine – so that all black pixels in it get marked as
transparent. The new pixel map is then rendered as an image in the tile’s DIV – using
putImageData.

• Directly afterwards, a second Image Object is instantiated as img2
• img2 then declares its own onerror and onload event-handlers.
• Program control then arrives at the penultimate statement of the function – where img2 is

assigned a src attribute which now instructs the browser to try to load that image – and
trigger either its onerror or onload code.

• Its onerror and onload event-handlers are similarly designed to mark all black pixels in
img2 as transparent, and then overlay its new pixel map on to the tile’s DIV.

7.5 Caching and Local Storage

Any thumbnail image once loaded from a given online service typically gets cached by the browser
– where it can be automatically retrieved for repeat viewing, without further hitting the service, and
so play fair with that service (satisfy requirement R3).

However, the browser does not cache the search results served as JSON by the CreoDIAS Finder.
Indeed it would be inappropriate to cache results from the current calendar month, as they are apt to
update with new content arriving by the hour or by the day. The results for earlier months, however,
are not expected to change so we take explicit measures to protect CreoDIAS from their undue
repeat requests. To achieve this we deploy the browser’s local-storage API [24] – which provides,
per web domain, a few megabytes to store and retrieve items of text.

In particular, we store an item for each previously visited calendar month-view. Each item is made
addressable by assigning it a unique key. In our case, we use keys like Sardinia-2022-06 – where
Sardinia is the name attribute of the tile-panel, 2022 is the viewed year and 06 the viewed month.
The contents of each item is simply the HTML code that rendered the previously visited calendar
month-view. The logic is as follows.

• Before making a new request to the CreoDIAS Finder the key is formulated for the {tile-
panel name, year, month} combination.

• That key is looked up in local-storage:
• If found the item is retrieved and used to replace the HTML of the calendar month-view
• If not found the request to CreoDIAS Finder goes ahead and a new calendar month-view is

built from the search results.
• If the latter case corresponds to a past month then the HTML of the new calendar month-

view is written to local-storage using the new key formulated for that month-view.
• Eventually the local-storage fills up and older items get selectively retired by the browser.

21 / 28

7.6 Accessing meta-data at Google Storage via CORS proxy in the Tile-Tab

The Tile-Tab resides in a separate browser tab – as indicated in the Mini User Guide and shown in
Fig.1. It is launched from the web-app by a click on a chosen thumbnail in its upper-panel – as a
natural gesture to zoom-in on the L2A product-data signalled as available by the green-tick. As such
the Tile-Tab is an independent web page (under the same domain) which configures itself in
response to the data it receives. These data are:

• Tile id and its product stems – there are 2 stems in the case of a split-tile. These parameters
are passed via the URL’s ‘search-string’ – e.g. as
&tile=T32SMJ&stems=S2A_MSIL2A_20220531T101611_N0400_R065_T_20220531T163910
+S2A_MSIL2A_20220531T101611_N0400_R065_T_20220531T180718

• Thumbnail data – originally from CreoDIAS or CNES-PEPS – obtained using the above
parameters – as detailed earlier.

• Meta-data requested from Google Storage – see below

The Tile-Tab is built out of a simple HTML template that lays out a larger version of the thumbnail
– above which we write the acquisition date, the tile id and allocate a row for some download links.
This template gets duplicated for split-tiles so that the two individual L2A products will then be
displayed side-by-side. Below the thumbnails there is a row of geolocation options.

Downloads
The task of generating the URLs for the download links is made non-trivial because the ESA format
they follow cannot be wholly predicted from the band-name, tile-id and product stem. The
following example is for the band B02 10m resolution JP2 image:

https://storage.googleapis.com/gcp-public-data-sentinel-2/L2/tiles/32/T/NK/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911.SAFE/GRANULE/
L2A_T32TNK_A028076_20220722T101518/IMG_DATA/R10m/
T32TNK_20220722T100559_B02_10m.jp2

It contains a string A028076_20220722T101518 that cannot be predicted. Instead the URL –
including that string – can be recovered from an axillary meta-data file that accompanies the
product. The Tile-Tab does this by fetching a file called MTD_MSIL2A.xml from the given Google
Storage folder, i.e.:

https://storage.googleapis.com/gcp-public-data-sentinel-2/L2/tiles/32/T/NK/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911.SAFE/
MTD_MSIL2A.xml

Ideally, this task would be as simple as fetching the JSON files from CreoDIAS Finder. In modern
browsers the Cross-Origin Resource Sharing (CORS) protocol [25] defaults to preventing the
browser accessing JSON or XML files served from other sites. However, the browser may include
in its HTTP request the header – {'Origin': document.location.origin} and the server may
participate in the protocol and signal that the files are to be accessible within the browser.
CreoDIAS chooses to participate in CORS – but Google Storage does not. Nevertheless, a file is

22 / 28

sent to the requester in both cases. Since Google declines to satisfy the CORS protocol the browser
duly denies access.

Yet outside of the browser context access can easily be obtained – e.g. a Node_js program known as
CORSflare_js is capable of reading meta-data files from Google Storage. CORSflare_js [26] is
also capable of acting as a reverse proxy that:

1. receives request from the browser for a file housed at Google Storage
2. forwards the request to Google Storage – maintaining all headers, etc.
3. receives the response from Google Storage – including the file
4. attaches the permissive CORS protocol header
5. forwards the reply back to the browser

The entire sequence is transparent to the user. For this purpose we run CORSflare_js as our own
live service on the Internet – without incurring significant back-end responsibilities – as follows:

1. by creating a non-billing account at Cloudflare
2. by deploying CORSflare_js as a Cloudflare Worker [27]
3. by routing all request for meta-data at Google Storage through that Cloudflare Worker.

That then allows our Tile-Tab JavaScript to read file MTD_MSIL2A.xml, extract the correct URLs
and assign them for the 10m MSI images for the bands B02, B03, B04, B08 and TCI. Of course, it
would be a simple matter to configure access to the other Sentinel-2 L2A bands.

Geolocation
The white cross shown in Fig. 1 indicates that the user has clicked on the Tile-Tab image to
establish a point of interest. That point is then mapped onto a latitude, longitude coordinate so to
allow the user to launch the EO Browser at that chosen geo-location. However, that mapping needs
additional meta-data: in particular, the UTM latitude and longitude coordinates of the upper left
corner of the tile and the WGS84/UTM zone label.
That data can be obtained from a second file – MTD_TL.xml – housed at Google Storage, e.g. at:

https://storage.googleapis.com/gcp-public-data-sentinel-2/L2/tiles/32/T/NK/
S2B_MSIL2A_20220722T100559_N0400_R022_T32TNK_20220722T130911.SAFE/GRANULE/
L2A_T32TNK_A028076_20220722T101518/MTD_TL.xml

Again the same Cloudflare Worker is needed to gain access to that file in the browser. In particular,
we extract the following attributes from the file: ULX, ULY, HORIZONTAL_CS_NAME. These are then
used to derive the latitude, longitude coordinates beneath the white cross, to display the coordinate
in the row beneath the Tile-Tab image, and to formulate the direct URL into the EO Browser – e.g.:

https://apps.sentinel-hub.com/eo-browser/?lat=40.09&lng=9.57&zoom=16&time=2022-
07-22&preset=1_TRUE_COLOR&datasource=Sentinel-2%20L2A

For small regions of interest it may be desirable to skip the Tile-Tab page and instead navigate
directly from the Web-app to the chosen location using an URL such as that above.

23 / 28

8. Extracting NDVI using EO Browser launched from the Tile-Tab

Fig 5. Screenshot of the EO Browser: Making a
graph of NDVI for a polygon at Bonassai in Sardinia –
© Sinergise, Ljubljana, Slovenia.

24 / 28

Once launched for the given time and location from the Tile-Tab (see Fig. 1) the EO Browser can
then be used to display the Normalized Difference Vegetation Index (NDVI) rather than the usual
colour image. In particular, the tool at the top right corner of the EO Browser

can be used to draw a small polygon (in blue) onto the NDVI image and then made to display a
graph of the variation over several months, or years, of the NDVI – in order to assess state of the
vegetation in the targeted zone. Fig 5 show a screenshot of the process.

More experienced users might choose instead to download MSI images from the Tile-Tab and carry
out their own analysis on a local workstation. Although such analysis is beyond the scope of this
report it can be achieved using ESA's SNAP software, a GIS, or by using custom Gdal based
scripts.

9. Discussion

As demonstrated above in the Gallery section the IsolaS2 web-app is well suited for a variety of
islands and regions around the globe – especially where:

• The range of longitudes is such as to not to signal more than one acquisition per calendar
date-cell.

• Adjacent UTM tiles do not unduly overlap.

In the latter case, when the tile's thumbnails are assembled into grids the repeat of the overlapping
areas between adjacent tiles will have only minor visual salience – e.g. see the cloud above the Isle
of Skye in the grid of the Hebrides.
However, the inhomogeneous infrastructure of the UTM tessellation means that, in certain key
geographical loci, tile-overlaps can be large enough to distort the coherence of our web-apps
depiction of an island or region. For example, the island of Crete – see Fig. 7 – is particularly
unsatisfactory for two reasons:

• the large longitudinal extent of the island means only roughly half of it is visible on any
given acquisition day – in Fig 6. we show just the Western part.

• the large tile-overlap occurring for Western Crete results in a caricature of the shape of the
place – rather than its more recognisable form.

The established remedy to overlapping tiles is to compute a mosaic from the tiles and present it
instead. Our web-app does not attempt that. It might be technically possible via pixel-manipulation
in the browser – but that is beyond the scope of the current work. Mosaicking is already done well
in the EO Browser which can be called directly from the Tile-Tab, or in ESA’s SNAP operating
upon downloaded JP2 band images.

25 / 28

Fig 6. Western Crete with visual disruptive repetition

Fig 7. Overlapping UTM Tessellation for the island of Crete

Although, the web-app successfully deploys a CORS proxy via a CloudFlare Worker it would
nevertheless be preferable that Google participate in the CORS protocol. To that end on 13 July
2021 the feedback was sent to the providers of the Bucket gcp-public-data-sentinel-2. No reply or
solution has arrived at the time of writing. So the danger remains that the CloudFlare Worker may

26 / 28

in time become a bottleneck as the number of concurrent users of the Tile-Tab module increases. A
work-around would be to dedicate one CloudFlare Worker per geographical configuration – yet that
would run counter to our Minimal Maintenance requirement (R1).

10. Conclusions

All seven of the list of must-have requirements are satisfied by the CRS4 web-app IsolaS2
deploying several state-of-the-art innovations – with the following minor provisos:

R1 middleware – Although IsolaS2 has no back-end stack. We have had to resort to a degree of
Middleware whenever live services fail to participate in the CORS protocol. This is currently the
case for Google Storage – where we deploy the CORS proxy, as explained above – but which
incurs no costs and, once up and running, requires zero maintenance. Occasionally, CreoDIAS
Finder becomes misconfigured and also fails to participate in the CORS protocol. To date we have
observed three periods of failure – often lasting a day or so. For that reason we have now
programmed our fetch code to catch such failure and then automatically retry via a similar
CORSflare proxy.

R5 UTM tile-overlap – Although IsolaS2 is generally configurable to other geo-locations of similar
size and shape a few locations incur a UTM tessellation that disrupts the ready visual interpretation
of the tiles in the upper panel – as was illustrated above for Western Crete.

The web-app IsolaS2 – at the time of writing – runs live at the following URL:

 https://crs4.github.io/IsolaS2/src

with access to each of the of the islands and regions shown in the Gallery Section above.

As such, the web-app IsolaS2 helps lower the architectonic barriers experienced by members of the
public, citizen scientists, nascent micro-enterprises and Regional government departments wishing
to quickly assess the convenience of using of Sentinel-2 MSI data for land-use analysis across their
particular region or island. Finally, it does so in an intuitive and readily discoverable manner.

Acknowledgments

This project was inspired by Gianluigi Zanetti and sustained by Luca Pireddu at CRS4.

27 / 28

https://crs4.github.io/IsolaS2/src

References

1. Brelstaff G, Moehrs S, Anneda P, Tuveri. M, Zanetti G (2000). Electronic Patient Records
on the Java InfoBus. In: Proceedings of the Second International Conference on the
Practical Applications of Java (PAJava 2000). p. 45-58, Blackpool, UK:The Practical
Application Company, ISBN: 1-902426-09-6

2. Brelstaff G, Chessa F (2011). Interactive alignment of Parallel Texts a cross browser
experience. In: W3C Workshop: Content on the Multilingual Web. Pisa Italy, 4-5 April 2011,
W3C Consortium

3. Chessa F, Brelstaff G (2011). Going Beyond Google Translate. In: Proceeding Chitaly
Proceedings Of The 9th ACM SIGCHI Italian Chapter International Conference on
Computer-Human Interaction: Facing Complexity . Alghero SS, p. 108-113, New
York:ACM, ISBN: 978-1-4503-0876-2, doi: 10.1145/2037296.2037324

4. Brelstaff G, Chessa F (2014, April) Precision phrase linking and pulling – Ispantu in
Footnotes, comments, bookmarks, and marginalia on the Web - A W3C Workshop on
Annotations W3C Workshop on Annotations num. 1 Ivan Herman, Doug Schepers W3C

5. Brelstaff, G., & Chessa, F. (2015, May). Exceptional texts on the multilingual web. In
Proceedings of the 24th International Conference on World Wide Web (pp. 847-851).

6. Brelstaff G. & Zanetti G. (2020) Earth Observation Satellite Multi-Spectral Imaging Data
for Sardinian Land-Use Application: Sentinel-2 and Landsat-7/8. CRS4 Report.

7. Brelstaff G. (2021) Fostering inclusive regional access to Sentinel-2 data. CRS4 Report.
8. ESA Sentinel-2 https://sentinel.esa.int/web/sentinel/missions/sentinel-2
9. USGS Landsat 7 https://www.usgs.gov/landsat-missions/landsat-7
10. USGS Landsat 7 https://www.usgs.gov/landsat-missions/landsat-8
11. Sci-Hub, ESA Copernicus Open Access Hub https://scihub.copernicus.eu/dhus/#/home
12. EO Browser , Sinergise, Ljubljana, Slovenia https://apps.sentinel-hub.com/eo-browser
13. CreoDIAS Finder, CloudFerro, Warsaw, https://finder.creodias.eu
14. GoogleStorage Sentinel-2 https://storage.googleapis.com/gcp-public-data-sentinel-2
15. ESA's SNAP software https://step.esa.int/main/download/snap-download/
16. Gdal based scripts https://gdal.org/
17. IrfanView graphic viewer. https://www.irfanview.com/plugins.htm
18. Firebase hosting service https://firebase.google.com
19. GitHub Pages https://pages.github.com
20. CSS Grid layout https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
21. eAtlas web mapping system https://maps.eatlas.org.au
22. loadAlternative Javascript function from stackoverflow.com
23. The ImageData object JavaScript API

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/
Pixel_manipulation_with_canvas

24. Window.localStorage JavaScript API
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

25. Cross-Origin Resource Sharing an HTTP-header based mechanism
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

26. CORSflare_js a lightweight JavaScript CORS Reverse Proxy designed to run in a
Cloudflare Worker. https://github.com/Darkseal/CORSflare

27. Cloudflare Worker, a serverless execution environment https://workers.cloudflare.com/

28 / 28

https://workers.cloudflare.com/
https://pages.github.com/
https://github.com/Darkseal/CORSflare
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Pixel_manipulation_with_canvas
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Pixel_manipulation_with_canvas
https://stackoverflow.com/questions/35225304/use-onerror-twice/35225713#35225713
https://maps.eatlas.org.au/index.html?intro=false&z=7&ll=146.90137,-19.07287&l0=ea_ref%3AWorld_ESA_Sentinel-2-tiling-grid_Poly,ea_ea-be%3AWorld_Bright-Earth-e-Atlas-basemap,google_HYBRID,google_TERRAIN,google_SATELLITE,google_ROADMAP&v0=,,f,f,f,f
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://firebase.google.com/
https://www.irfanview.com/plugins.htm
https://gdal.org/
https://step.esa.int/main/download/snap-download/
https://storage.googleapis.com/gcp-public-data-sentinel-2
https://finder.creodias.eu/
https://apps.sentinel-hub.com/eo-browser
https://scihub.copernicus.eu/dhus/#/home
https://www.usgs.gov/landsat-missions/landsat-8
https://www.usgs.gov/landsat-missions/landsat-7
https://sentinel.esa.int/web/sentinel/missions/sentinel-2

	
	IsolaS2 web-app
	
	1. Introduction
	
	2. Motivation
	3. IsolaS2 – illustrated for the Island of Sardinia
	4. Mini User Guide
	5. Must-have requirements
	6. Gallery of Islands and Regions
	7. Implementation details
	7.1 Declarative HTML & CSS grid
	7.2 RESTful Query and Responses
	7.3 Fail-over image sourcing
	7.4 Composite imaging – to render “split-tiles”
	7.5 Caching and Local Storage
	7.6 Accessing meta-data at Google Storage via CORS proxy in the Tile-Tab

	8. Extracting NDVI using EO Browser launched from the Tile-Tab
	9. Discussion
	10. Conclusions
	Acknowledgments
	References

